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ABSTRACT
Stochastic modeling of any real time situation falls in four major categories(i)discrete in observation taking values in
discrete space (ii) discrete in observation taking values in continuous space (iii) continuous in observation taking
values in discrete space (iv) continuous in observation taking values in continuous. We list the fatigue crack growth
in the important consideration in structural design and for continued operation of safety critical structural
components. We study the major types of probabilistic modeling of fatigue crack growth in any rigid body in that
structural material. We substantiate suitability and sustainability of the best type in fatigue crack growth at structural
materials.
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I. INTRODUCTION

We give the various models for random fatigue crack growth. We give an elaborate account of the work by Sobczyk.
Crack growth model under random loading is dealt at length .Crack growth is given as a differential equation model
and as a Markov chain model .Crack propagation is illustrated as a diffusion model .We have found that stochastic
modeling given by Keith Ortiz is best suited for fatigue crack growth.

Traffic growth has always been much greater than predicted and with the development of new materials whose
properties cannot be obtained using empirical methods, the need to predict the remaining lives of pavements and the
design of new

Pavements to with stand heavier traffic loading with new axle and suspension configurations require the use of an
analytical method as the traditional empirical ones cannot cope.

It is desirable to formulate probabilistic models for fatigue phenomena that deal with all physical and chemical
processes within a considered material which we observe are likely to be responsible for the generation of fatigue.
While the existing physical theories are helpful in explaining qualitatively, the nature of fatigue, they do not give a
base for treating fatigue problems quantitatively to yield results that are valid at the macroscopic level. In modeling
fatigue processes, it seems to be important to relate the random factors and processes provoking fatigue, the
mechanism of fatigue crack growth. It deals with the randomization methodology of investigation of fatigue crack
growth through various models. It considers the Paris law with modified versions and discusses the fatigue failure or
equivalently the propogation of cracks under random loading. The standard Paris Erdogen model is considered and
some of the parameters in the governing equation are randomized for studying crack growth mechanism of materials.

Probabilistic damage models based on Markov chain theory is studied. A basic concept in the model is a duty cycle
which is repetitive period of operation on the life of a component during which damage accumulates in a
probabilistic manner only on the duty cycle itself and on the value of the damage accumulated at the start of the duty
cycle.

On considered the growth of fatigue crack as a continuous stochastic process and obtained it as a diffusion process.

Diffusion model of crack propagation is studied. It deals with the integrated of the two probabilistic approaches
involving randomization of fatigue growth law co-efficient.
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II. STOCHASTIC CRACK GROWTH EQUATION

We improve the model for random fatigue by accounting for randomness of other factors provoking fatigue.

The model proposed is

dL

— = Cp(t)g(Q) (K )X (L, ¥) o.ooee (1)

dt
L{t,)=1L,

Here X(t,y) represents the combined effect of unknown random factors of external origin such as environment,

creep etc.,

IfX(t,¥) = m,+ X (t,¥) where My is the average value of X(t,y)

= = Cp(D)G(Q) Ky, + X (£ 1)] v ()

dr

The above equation can be rewritten as
dL =
= = Cn(©)m,g(Q) (Kms)™ + Cr(D)g(Q) (Kpms)™X (£.7) ... 3)

It is convenient to write the stochastic growth model (2),(3) in the form

% =a(L, )+ a(L.OTEY) oo 4)
L(ts) = L,
Or
== AOPO+HOPOTEY) o )
L(ts) = L,

Where p = n/2, € =cn?
a(Lt) = fi(D)LP(t)
a(L.t) = f(e)LP(¢)
fi(t) = m, Cu(Dg(Q)S,ns () ... (6)
f(t) = 1/m,fi(t)
There are three basic factors which determine properties and admissibility of the model proposed. They are

i.  Random applied stress S(t, y).If it is stationary
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Sms(t) = S, = Constant
Q(t) = Q,= Constant
ult) = Ky

f,(t) = f.,° = Constant
£(0) = f° = Constant

ii.  Random multiplicative noise X(t,y)

ii. Constant experimental parameters especially realistic values of ‘p’.
A. Properties of Stochastic growth model

Since stochastic differential equation (1) and (2) has been introduced in a somewhat artificial way (via)
randomization of experimental laws one should check carefully its properties and usefulness. In order to recognize
the basic properties of the model introduced we consider a special but important case when random disturbance
X(t,y) is a white Gaussian noise, It is worth nothing that because of normality of the distribution it can theoretically

take negative values with positive probability. This deficiency is not serious since the deterministic term in (4)
which is positive dominates the tendency of the motion.

Let us assume that in equations (3) and (4)
X(ey)=¢ty..... (7
< &(t,y)E(t,y) = =2D6(t; — ty)

Where D is a constant intensity of noise and <. > denotes averaging. Although (4) together with X(t,¥) given by (7)
looks like a differential equation, it is really G formal record of symbols since £(t,y) is an abstraction and not a

physical process. Equation (5) with (7) does not define a stochastic process L(t,¥) yet, it is a pre-equation.

There are two well known interpretations of our pre-equation turning it into a meaningful stochastic
differential equation defining process L(t,¥) .These are the Ito and Stratonovich interpretation. Here we adopt

Stratowcich interpretation .This means that Ito equation can be understood as the following equivalent Ito
Stratonovich interpretation,

dL(t) = a*(L, t)dt + a(L, t)dw(t)...... )
L{t,)=1L,

Where w(t) is the Brownian motion starting from ¢t = ¢, and w(t,)=0 almost surely white noise £(t) is a

generalized derivative of w(t) and

a*(L,t) = a(l,t) + Do(L,t)da /0L

= f,(IP(t) + pDfA(EL2P1(E)...... )

It should be noted that in the Stratonovich interpretation the deterministic (drift) term a*(L,t) differs from the
macroscopic deterministic law equations (14) and (15).
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B. Case 1

Adopting the results of general theory of stochastic systems, analysis of equation (29) yields the following
conclusions.
1. In the case when occurring in experimental laws is not greater than one the crack growth is stable in a
sense that on each finite time interval L(t) takes finite values with probability one.

When p=1, what is often met in experimental predictions, the crack size L(t) is expressed explicitly by
qualities occurring in the problem i.e. by characteristics of random applied stress, the Brownian motion
process W(t) characterizing other uncertainties and initial crack length L,. When random applied stress is
stationary the appropriate formulae are very simple. The probability distribution of the crack size is for
each fixed t and deterministic L, log-normal.

2. In the case where large variety of experimental laws, situation predicted by the model differs from this
when < 1.

3. The parameters occurring in the model proposed which need to be estimated from experiments are the
following:
Two material constants:

Candp = ; occurring in crack growth law.

One Constant: D characterizing the intensity of white noise &(t).

Three functions: m_(t} =< S(t,¥).5,ms (t)And u(t);
If random applied stress is stationary then: m.(t) = m, = constant. S,,.(t)=f, = constant and
ul(t) = p, = constant.

III. A DIFFERENTIAL EQUATION MODEL FOR RANDOM FATIGUE GROWTH

Stochastic models for cumulative damage describe the probabilistic mechanism of fatigue accumulation from which
fatigue life can be predicted. These models can be broadly classified into two categories. (a) Time to failure models
where the system is characterized through a distribution function for the time to failure. (b) ‘Phenomenological’
models which characterize explicitly the underlying physical mechanism which causes the failure. Cumulative
damage models are phenomenological models in which shock causes a certain amount of damage is additive.
System failure occurs when total damage exceeds a critical level.

Most of our basic knowledge on fatigue behavior comes from experiments. The experimental data from engineering
laboratories constitute a basic source of information about the fatigue behavior of materials subjected to various
loading conditions. An important problem is to represent the information contained in the fatigue data in the
language of Mathematics.

In the study of crack propogation in materials, most of the researchers take into consideration the paris-Erdogan
equation.

da
-— = m
oy = C(aK)

For the rate of fatigue growth under homogeneous cyclic stressing which was attained from experimental
results as the linear regression of on where ‘a’ is the crack length. ‘N’ is the number of cycles and k is the range of
stress intensity factor at the crack tip. For the rate of fatigue growth under homogeneous cyclic stressing which was
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attained from experimental results as the linear regression of log [g} on log{AK) where ‘@’ is the crack length. ‘N’

is the number of cycles and k is the range of stress intensity factor at the crack tip.

In experimental investigations of fatigue crack growth under constant amplitude cyclic loading one finds that curves
relating fatigue crack length ‘a’ to cycle number ‘n exhibit certain regularities though they may vary from specimen
to specimen. Efforts were made in designing the method of imbedding a probabilistic structure upon such a
collection on experimentally obtained curves that could be of use in applications. One such approach to introducing
a probabilistic structure is to start with some deterministic differential equation description and introduce random
variables in place of the parameters. The Paris-Erdogan model is one among the large number of extensively used
model for studying crack growth mechanism in materials. Here we consider various forms of randomization of Paris
equation, the properties of its stochastic process solutions as models of real crack growth data. This approach was
dealt with by Kozin and Bogdanoff(9)

A. The Paris-Erdogan equation

We consider the paris-Erdogan model from two points of view namely.
Crack length ‘a’ is the dependent variable.

Cycle number ‘n’ is the dependent variable.

It is generally accepted that fatigue crack under constant amplitude cyclic loading can be related to the
stress intensity factor Ak through the first order differential equation.

da _ m
= (AR (10)

Where a = a(n) the crack length at time n.In general ‘f is is an experimentally determined function and ‘¢’ is an

. . d N .
experimentally determined constant. Clearly d—a = 0 implies that ¢ and f are non —ve.From fracture mechanics, one
n

can relate Ak to crack length ‘a’ via
Ak = aASaal/? ......... (11)

Where ‘a’ is a geometrically related parameter and Az is the applied stress amplitude. (10) can be written as

2 = cf(arsa'?) ....... (12)

On the basis of number of experimental investigations ‘f* can be approximated as a power function so that

d

d—i =c(ahs)Paf = Kaf/2.. ... (13)

Where k contains all geometric, stress and material factors or parameters. The above equation (13) contains three
parameters k, p and a .Thus any randomization of the P.E. equation must be based upon a randomization of these
three parameters.

NOWI%= [ kdn
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We have the initial condition  a{0) = a,.
2
2_]8 aﬂz_ﬁfzzc
2-p ,_ 2 -
—5 @l g—p e,

Iv.

a(n) = a,2F"7? +2%Gkn2”2‘37' = k(a,)....... (14)

CONCLUSION

The conclusion to be drawn regarding stochastic modeling is that

L
IL.
III.

For very short crack length auto correlation function must be known.
For medium crack lengths, the noise can be treated as uncorrelated white noise.
For very long cracks only the random co-efficient of the growth law are necessary.

Thus uncertainty of fatigue life predictions in most design problems, the effects of material inhomogenities are not
negligible. In these situations, the researcher must first acknowledge the existence of the randomness before
declaring it negligible.
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